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Phenomenological Importance
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B0–B0 Mixing
I Allows us to determine the CKM matrix elements

I Dominant contribution in SM: box diagram with top quarks
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tsVtb| forBs−mixing
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I Experimental error of ∆Mq is better than a percent;
lattice uncertainty for ξ is about 3%
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B → πlν form factor

I Allows to determine the CKM matrix element Vub from the

experimental branching ratio

dΓ(B → πlν)

dq2
=

G 2
F |Vub|2

192π3M3
B

[
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BM
2
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]3/2 |f+(q2)|2

I Tension between exclusive determination and inclusive determinations

of Vub is greater than 3σ
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Possible Deviations from the Standard Model

[Lunghi and Soni 2010/11]

I Experimental value for sin(2β) is 3.3σ lower than SM expectation

I Measured value for BR(B → πlν) is 2.8σ lower than predicted

I Most likely source of deviation in Bd(s) mixing and sin(2β);

less likely in B → τν

[Laiho, Lunghi and Van de Water 2012,

http://www.latticeaverages.org]

I Scenario in which new physics is in B → τν decay and/or

in Bd -mixing preferred

I If tension is taken at face value, points to physics at a few-GeV mass scale

See also: http://ckmfitter.in2p3.fr, http://utfit.roma1.infn.it

http://www.latticeaverages.org
http://ckmfitter.in2p3.fr
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2+1 Flavor Lattice Calculations of fBs
, fB , fBs

/fB , ξ, Vub
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Our Project
I Use domain-wall light quarks and nonperturbatively tuned relativistic

b-quarks to compute at few-percent precision

I B0–B0 mixing

I Decay constants fB and fBs

I B → π`ν form factor

I Tune RHQ parameters using bottom-strange states and high statistics

I Improve upon exploratory studies and verify made assumptions

I Validate tuning procedure by computing bb̄ masses and splittings

I Derive lattice perturbation theory for matching lattice results to

continuum 1-loop in tadpole-improve lattice perturbation

I Improve matching using a mostly-nonperturbative scheme for fB , fBs

and B → π`ν
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2+1 Flavor Domain-Wall Gauge Field Configurations

s = 0 s = Ls − 1

I Domain-wall fermions for the light quarks (u, d, s)

[Kaplan 1992, Shamir 1993]

I Iwasaki gauge action [Iwasaki 1983]

I Configurations generated by RBC and UKQCD

collaborations [C. Allton et al. 2008],

[Y. Aoki et al. 2010]

approx. # time
L a(fm) ml ms mπ(MeV) # configs. sources

24 ≈ 0.11 0.005 0.040 331 1636 1
24 ≈ 0.11 0.010 0.040 419 1419 1

32 ≈ 0.08 0.004 0.030 307 628 2
32 ≈ 0.08 0.006 0.030 366 889 2
32 ≈ 0.08 0.008 0.030 418 544 2
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Relativistic Heavy Quark Action for the b-Quarks

I Relativistic Heavy Quark action developed by Christ, Li, and Lin
for the b-quarks in 2-point and 3-point correlation functions

[Christ, Li, Lin 2007; Lin and Christ 2007]

I Builds upon Fermilab approach [El Khadra, Kronfeld, Mackenzie 1997]
by tuning all parameters of the clover action non-perturbatively;
close relation to the Tsukuba formulation [Aoki, Kuramashi,
Tominaga 2003]

I Heavy quark mass is treated to all orders in (mba)n

I Expand in powers of the spatial momentum through O(~pa)
I Resulting errors will be of O(~p2a2)
I Allows computation of heavy-light quantities with discretization errors

of the same size as in light-light quantities

I Applies for all values of the quark mass

I Has a smooth continuum limit
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Tuning the Parameters of the RHQ Action
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I Compute for all seven parameter sets

spin-averaged mass M = (MBs + 3MB∗s )/4 → 5403.1(1.1) MeV
hyperfine-splitting ∆M = (MB∗s −MBs ) → 49.0(1.5) MeV
ratio M1

M2
= Mrest/Mkinetic → 1

I Assuming linearity

Yr =

 M
∆M
M1
M2


r

= J(3×3)
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r

+ A(3×1) (r = 1, . . . , 7)
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I We extract the RHQ parameters and iterate until result is inside uncertainties m0a
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ζ
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Nonperturbatively Tuned Parameters of the RHQ Action
(preliminary)

ml
sea m0a cP ζ

0.005 8.43(7) 5.7(2) 3.11(9)
0.010 8.47(9) 5.8(2) 3.1(2)

average 8.45(6) 5.8(1) 3.10(7)

ml
sea m0a cP ζ

0.004 4.07(6) 3.7(1) 1.86(8)
0.006 3.97(5) 3.5(1) 1.94(6)
0.008 3.95(6) 3.6(1) 1.99(8)

average 3.99(3) 3.57(7) 1.93(4)



Introduction Actions Tuning Results bb̄ LPT B-physics Conclusion

Preliminary Predictions for the Heavy-Heavy States
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I RHQ action describes heavy-light as well as heavy-heavy mesons

I Tuning the parameters in the Bs system we can predict bottomonium states
and mass splittings

ηb = 9350(33)(37) MeV

Υ = 9410(30)(38) MeV

∆(ηb,Υ) = 60(05)(20) MeV

∆(χb0, χb1) = 44(05)(19) MeV
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χb0 = 9808(35)(39) MeV

χb1 = 9851(35)(39) MeV

hb = 9862(36)(39) MeV

I Publication on tuning and bottomonium spectroscopy to appear soon
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RHQ Lattice Perturbation Theory [C. Lehner]

Motivation I Knowing the RHQ parameters nonperturbatively we can

compare the outcome with lattice perturbation theory

I Helps to build confidence that lattice perturbation

theory is working also in cases where we do not have

fully non-perturbative matching

(e.g. decay constants, form factors)

Method I Computation at 1-loop order

I Mean field improved

I Use nonperturbative inputs for 〈P〉, 〈R〉, 〈L〉 and m0a

I Predict: cP and ζ

I Naive α2
S ∼ 5% power-counting estimate
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I Central values: average of one-loop mean-field improved values computed
with u0 obtained from the plaquette and from the spatial Landau link

I Error on perturbative cP : difference between mean field methods dominates

I Error on perturbative ζ: naive power-counting dominates

I Nonperturbative values include systematic errors from discretization errors
in quantities used for tuning

I Agreement within errors ⇒ MF-improved LPT can be trusted in situations
for which NP matching factors are not available
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B0 − B0 Mixing Matrix Element Calculation

t1 tO∆B=2 t2

b b

q q
I Location of four-quark operator is fixed

I Location of B-mesons is varied over all possible time slices

I Need: one point-source light quark and one point-source heavy quark
originating from operator location

I Propagators can be used for B- and B-meson

I Project out zero-momentum component using a Gaussian sink

I Optimize Gaussian wavefunction to minimize excited-state contamination in
B-meson 2-point correlation function
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Preliminary B- and B∗-meson mass
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I L = 24, ml
sea = 0.005, N = 1636, only statistical uncertainty
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Mostly Nonperturbative Renormalization

For fB , fBs and B → π we plan to compute mostly non-perturbative
renormalization factors á la [El Khadra et al. 2001]

%bl =
Z bl
V√

Z bb
V Z ll

V

I Compute Z ll
V and Z bb

V non-perturbatively and only %bl perturbatively

I Enhanced convergence of perturbative serious of %bl w.r.t. Z bl
V

because tadpole diagrams cancel in the ratio

I Bulk of the renormalization is due to flavor conserving factor√
Z ll
VZ

bb
V ∼ 3

I %bl is expected to be of O(1); receiving only small corrections

I For domain-wall fermions ZA = ZV +O(mres) i.e. we know Z ll
V

[Y. Aoki et al. 2011]

I Mostly nonperturbative renormalization not yet computed for
B0–B0 mixing
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B-meson Decay Constant Calculation
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I Re-use: point-source light quark and generate

Gaussian smeared-source heavy quark

I Final result will use mostly nonperturbative

renormalization

I Very preliminary result for fBs

I Renormalization and matching

to be improved:

nonperturbative Z ll
V

perturbative Z bb
V

(tree level, 20% error)

%bl = 1

I Axial current tree-level

O(a) improved

I Small scaling violations
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B → πlν form factor [T. Kawanai]

tVµ

tsink

bq

l

t0

I Compute matrix element of the b → u vector current between

B-meson and pion

I Fix location of pion at t0 and B meson at T − tsink − t0

I Vary operator location tVµ
in that range

I B-meson is at rest, inject momentum on pion side

I Using partially quenched daughter quark-masses should help to

better resolve quark-mass dependence and pion-energy dependence
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Conclusion

I We have completed tuning the parameters of the RHQ action for
b-quarks, and find good agreement between our predictions for
bottomonium masses and fine splittings with experiment.

I Given this success, we are now using this method for B-meson
quantities such as decay constants and form factors, and expect to
obtain errors competitive with other groups.

I The RHQ action can also be used for charm quarks, and Hao Peng
is currently performing the necessary parameter tuning.

I We should have results for decay constants, mixing parameters, and
form factors within the next year, and maybe sooner!
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